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The validity of the Bardeen-Cooper-Schrieffer variational method is re-examined for two nuclear-model 
cases, one resembling the system of deformed nuclei and the other spherical nuclei. For simplicity, a constant-
pairing-force approximation is adopted. The projected BCS wave functions compare badly with the exact 
wave functions at pairing-force strength around the critical force strength, and only for sufficiently strong 
pairing forces does the BCS method seem to approach the exact. For the spherical case, the average value of 
the pair operator UN) is also calculated over a wide range of force strength, and the general behavior is 
found to be consistent with the results obtained on the wave-function components. The errors in eigenvalues 
are computed, and discussions are given as to the possible sources of the deviations. 

I. INTRODUCTION 

THERE has been a considerable amount of work 
devoted to the examination of the supercon­

ductivity theory of Bardeen, Cooper, and Schrieffer 
(BCS),1 and of Bogoliubov2 applied to nuclear structure 
problems. The BCS variational approach (or equiva-
lently Bogoliubov lowest order "compensation" method) 
seems the best for larger pairing-force strength and 
larger number of particles. It is well known that the 
ordinary BCS wave functions fail to conserve the 
number of particles. Attention has been given to the 
improved wave functions obtained by taking only those 
components of the BCS wave function which conserve 
the particle number.3 There is generally a lowering in 
eigenvalue accompanying the projection procedure. 

We will be mainly concerned here with an examina­
tion of the errors remaining after projecting the proper 
particle number components from the lowest BCS 
solutions of some simple systems. Comparison is made 
with exact solutions over a wide range of pairing-force 
strength. We use only a simple constant pairing-force 
Hamiltonian and do not consider higher order correc­
tions to BCS solutions such as admixture of 4-quasi-
particle components. 

First, we examine a half-filled system with the 
nucleon pairs in six equally spaced levels. Such a 
system has some similarity to those in deformed nuclei. 
Second, we study in greater detail the case of two 
orbitals with the same pair degeneracy ft, and with Q 
pairs of nucleons. In particular, we study the case of 
0 = 5 (we call this a "symmetric case"). We shall also 
examine an unsymmetric case where O^ftz. For ex­
ample, ftw=3, &z=4, with four pairs of nucleons. 

These systems all have in common the feature that 
below a certain critical pairing-force strength there is 
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1T. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 
108, 1175 (1959). 

2 N . N. Bogoliubov, Nuovo Cimento 7, 794 (1958); J. G. 
Valatin, ibid. 7, 843 (1958). 

8 See for example, B. F. Bayman, Nucl. Phys. 15, 33 (1960); 
A. K. Kerman, R. D. Lawson, and M. H. Macfarlane, Phys. Rev. 
124, 162 (1961); K. Dietrich, H. J. Mang, and J. Pradal, Phys. 
Rev. 135, B22 (1964). 

no nontrivial BCS solution. That is, at low force 
strength, the BCS approximation gives no configura­
tion mixing whatsoever, obviously a serious defect. 
From simple perturbation theory it is clear that no 
matter how small the residual force is, there will 
always be some configuration mixing. This spurious 
"threshold" behavior is not exhibited by BCS solutions 
for systems where a partly filled degenerate level lies 
at the Fermi surface. Thus the well-studied system of 
a single, partly filled degenerate orbital does not ex­
hibit this "threshold" behavior.4 

II . A REVIEW OF BCS SOLUTIONS 

This section is intended to define the notation.6 Let 
us take the convention of writing a complete set of 
quantum numbers by Greek letters, and all except the 
magnetic quantum number by Roman letters, i.e., a 
= (yJajaWa- • •)> and a= (yJaja- • *)• I*1 this notation, 
the BCS reduced Hamiltonian is given by (for con­
stant force strength) 

#red=E ^aa
+aa — (G/4) E aa

+a^a^a^, (1) 

where the fermion operator aa satisfies the usual 
anticommutation rule. Notice that this Hamiltonian 
describes only the scattering of pairs of particles 
in time-reversed pair states. An obvious generaliza­
tion would be to replace the interaction term by 
(£/4)]Ca/?75 da+d^"dy(i8' Using the trial wave function 

^ o = E (ua+vaaa+a-a
+) 10), 

and taking the expectation value of Eq. (1), a variation 
with respect to va gives 

2(ea-~\)uava—G E U0Vp(ua
2—va

2)—2Gva
2uava=Qt (2) 

Following the usual procedure,6 we drop the last term. 
4 B . R. Mottelson, in The Many Body Problem (Dunod Cie., 

Paris, 1959). 
8 See for an extensive discussion, S. T. Belyaev, Kgl. Danske 

Videnskab. Selskab, Mat. Fys. Medd. 31, No. 11 (1959). 
6 For example, S. G. Nilsson and O. Prior, Kgl. Danske 

Videnskab. Selskab, Mat. Fys. Medd. 32, No, 16 (1960). 
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Then we obtain 

*G£ 
a>o[(e a-X)2+A2]1 /2 

• = 1 , (3) 

(4) 

W / 2L r 
€« —X 

with 
[(€0-X)8+A*;P. 

1 , (5) 
J 

) • (6) 
«>o «>o I [ ( € a _x)2+A 2 ] 1 / 2 

In spherical representation, the summation index a (>0 ) 
is replaced by a Roman index, while multiplying the 
summand by O a = y a + J . All the subscripts should then 
be in Roman letters. 

The nonlinear equation (3) with Eqs. (4), (5), and 
(6) can be solved analytically only for exceptional 
cases (an example is given later); however, iterative 
solutions can be easily obtained by an electronic com­
puter for more general cases. 

III. UNIFORM SPACING (6-LEVEL) CASE 

We consider here a system with three pairs of 
nucleons in six doubly degenerate levels; this is a case 
rather similar to those in deformed nuclei. The BCS 

Q. 0.01 
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FIG. 3. The ratio of am­
plitudes (3rd order) CAU/ 
C123 in the six-level, three-
pair nondegenerate model 
with e = 100 keV. 
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FIG. 4. Error in 
eigenvalues for the 
ordinary and pro­
jected BCS solutions 
of the six-level, three-
pair model as de­
duced by comparison 
with exact solutions 
of 20X20 matrix. 
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FIG. 1. The ratios of am­
plitudes, Cm/Cm and Ci3e/ 
C123 in the six-level, three-
pair nondegenerate model 
with e= 100 keV. The arrow 
indicates the critical force 
strength. 

FIG. 2. The ratio of am­
plitudes (2nd order) C145/ 
C123 in the six-level three-
pair nondegenerate model 
with e = 100 keV. 

equations then yield six independent parameters va's. 
The exact solution, which amounts to diagonalizing the 
reduced Hamiltonian (1) exactly, has twenty compo­
nents. The wave function then has the form 

* . x— 2—i *s aftyA afiy 
a$y 

- |o>, (7) 

with Act0y+^aa
+a-a'

ha&ha-&+ay+a-y+. If we label the 
levels as 1, 2, • • •, 6 in increasing order, then Cm is the 
amplitude for occupation of levels 1, 2, 3, d 2 4 is the 
amplitude with one pair excited and so on. 

In order to compare the amplitude (7) with the BCS 
wave function (^), we need to project the appropriate 
components from the BCS wave function. The re­
maining parts in the BCS wave function are spurious, 
but necessary to make the wave function easy to 
handle. Defining a projection operator by 

P(fxve)^Q= ( I I «x) VVM,«*+ | 0 ) , 
\9^tl,Vtt 

we have 

( 0 1 A i24P(124) | ^ o ) VIV2UZV±UZUQ uzv± 

(0 | A i 2 3P(123) | \F0) V!V2VZU4U5UQ V3U4 

(8) 

(9) 

which may be compared with C124/C123 of the exact 
solution. 

In Figs. 1 through 3 are given the ratios of ampli­
tudes for both the BCS and exact solutions. We have 
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taken six equally spaced levels each separated by 100 
keV. Figure 1 shows the comparison for two of the 
nine amplitudes that involve a single pair promotion 
from the lowest levels 1, 2, 3 across the Fermi energy 
to 4, 5, or 6. The limiting slope in the weak-force limit 
is unity, corresponding to the first power dependence 
on G from first-order perturbation theory. For the 
ratio C124/C123 the BCS value crosses the exact for a 
force strength just above critical. For the other ratio 
plotted, the BCS ratio only very slightly ever exceeds 
the exact. The second-order amplitudes plotted in Fig. 
2 do not cross until about three times critical force 
strength, while for the third order amplitude of Fig. 3 
the BCS always lies below the exact. 

In Fig. 4 are plotted the errors in eigenvalues of 
ordinary and projected BCS solutions of the system 
in question, as deduced by comparison with exact 
solutions of the 20X20 matrix. Notice that the curves 
are superimposed up to the critical force strength and 
thereafter the projected solution shows much less error. 
The maximum error for the projected solution comes 
at a force less than twice critical strength, and this 
error is about 17 keV, or one-sixth the single-particle 
level spacing of 100 keV. The ordinary BCS eigenvalue 
may show an error of as much as half the single-
particle level spacing. 

IV. SYMMETRIC TWO-DEGENERATE-LEVEL CASE 

In this section, we examine the case of £2 pairs of 
nucleons in two levels of pair degeneracy 0, separated 
by an energy difference of e. In this case, the BCS 
equation can be solved analytically, and interesting 
features emerge from the comparison of the BCS and 
exact solutions. In order to be more general, a parallel 
calculation with two levels of different degeneracy 
(Oz=4, 0M=3, N=$) is also performed. In the latter 
case, no such simple analytical BCS solution is availa­
ble, and hence the solutions are obtained by iterative 
numerical solution of the Belyaev equations. 

What we will examine here are the following: First 
we calculate (|iV) for the upper level and compare the 
BCS and exact wave functions, and second we compare 
the ratios of amplitudes in a manner analogous to 
Sec. I I I . 

A. Quasispin Method 

For the system with large magnetic degeneracy, the 
Hamiltonian (1) can be easily diagonalized by the 
spin-wave method introduced by Anderson,7 and later 
applied to nuclear problem by Kerman et al.s Let us 
use this method to calculate explicitly the Hamiltonian 
matrix of the system. 

Following Kerman et al., we introduce the quasispin 

7 P. W. Anderson, Phys. Rev. 112, 1900 (1958). 
8 See Kerman et al., Ref. 3. 

operators 

a a>0 

S - = E 5 . ( f l ) = I » - A , (10) 
a a>0 

a>0 

= £ 5,(a) = § Z aa+aa-i E 0 ( a ) , 
a, a a 

where &(#) = i a + J , and a > 0 restricts the summation 
over only positive magnetic quantum numbers ^ a > o 
— Ea,%>o while a goes over both positive and negative 
values. In the operators of (10), we have for (1) 

# r e d = 2 £ € o 5 . ( a ) + E € a f i ( a ) - G S + S _ . ( 1 1 ) 
a a 

In the strong-coupling limit (G/€2>1, where I is an 
average level spacing) 

# r e d ^ - G S + S - , (12a) 

and in the weak-coupling limit, only the kinetic energy 
term remains 

HTed
w~2j: € f l [S , (a )+0(a ) /2 ] . (12b) 

a 

Thus, one could take a state that is diagonal in either 
HTed

w or HTed
s for a zero-order wave function. We 

introduce quasispin quantum numbers as follows: With 
a configuration given by 

[anlbn*cn*--2, (13) 

the quasispin parameters are fixed thus 

aK—max | nK— Q,K \ /2, 

aK°=(nK-nK)/2, 

c r = E 8 < / 2 , 
K 

0-O=Z(^K—Q*)/2 , 

K 

n = a, J, •••, 

which yield basis vectors of form 

WavfyWb", •••>. (14) 
The seniority quantum number is related to the 
quantity given above by 

Va—&a~- 2<Ta. 

Thus the ground state of even-particle system is given 
by 

which implies that we have to construct the wave 
functions with d a = i ^ a . Thus an empty orbital is 
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denoted by | J0 0 , ~ i O a ) , and hence a state with p 
pairs in a may be generated by 

(S+(a))*|iO.,-jOfl>, 
= {#!Oa(Oa- l ) - - - (0««-^+l )} 1 / 2 

X|J0«, - J12 a +^> . (15) 

We have the usual relations for angular momentum 
operations: 

Sz(a)\(Ti(Ti0; - • •; <rao-a
0, • • •) 

= <r«0 |W;--^<r«er«0 , • ' •> , (16) 

S2(a)\<ri<ri°i ••• ;<rao-fl°, • • • ) 

= Va((ra+ 1) | 0-iG-i0 ; " ' * J Cra(7a
0, ' ' ' ) , ( 17 ) 

S ± ( a ) | ( W ; • • •; <rocra0>={ira(cra+l)-cra0((ra0d=l)}^ 

X ^ 0 ; • • • ;*«*« 0 ±1 , • • • ) . (18) 

One might couple the a** values by twos to resultant 
vectors,9 but for our purpose it is more convenient to 
choose the m representation. Now a matrix element 
of the Hamiltonian given by Eq. (11) can be easily 

written down. Let us specialize for two fi-fold degener­
ate levels. The matrix elements are as follows: 

(o-icri0, <72er2
0|#red|<^', cr&f) 

= 2[e1((71o+J01)+€2((72o+ifi2)]a(cr1W,)5((r2V2
00 

- G 5 ( ( n W 0 5 ( ( r 2 V / ) { [ ^ ^ i + l ) - ^ 0 ( c r i 0 - ~ l ) ] 

+ C^2(cr2+l)-cr2o(cr2
0-l)]} 

- G S C c r A i O i l J f i C ^ ^ T D i C c n C i n + l ) 

- ( T i H c r i O d b l ^ + ^ ^ + l J - ^ ^ T l ) ] 1 ^ } . (19) 

In the coupled representation (i.e., in the representa­
tion where S+S„ is diagonal), the last two terms may 
be written as 

(crici0, 0"2a-2° | S+S_ | ori<Ti°\ cr2or2
0/) 

— S C(<TI<T20", cri°(r2
0cro)C(<ricr2o'; cr^Wco) 

X [ c r ( ( r + l ) - ^ o ( ( r o - l ) ] , (20) 

where C(- • •) is the usual Clebsch-Gordan coefficient. 
If we put 12 a=^6=5, N= 10, ea— eb=e in the "sym­

metric" example we get a matrix of the form 

H red = 

-SG - 5 G 0 0 0 0 
-SG 2 € - 1 3 G - 8 G 0 0 0 
0 - 8 G 46-17G - 9 G 0 0 
0 0 - 9 G 6e-17G - 8 G 0 
0 0 0 -SG 8e -13G - S G 
0 0 0 0 - 5 G 10e-5G 

(21) 

For a slightly "nonsymmetric" case with 0 o = 4 , fi&=3, 
iV=8, we have 

# r e d = 

-4G 
2\£G 
0 
0 

-2v3G 
2e-9G 
-2V6G 

0 

0 
-2V6G 
4e-10G 
-3V2G 

o • 

0 
-3vZG 
6e-7G 

(22) 

Let us consider the behavior at large and small G of 
the lowest state eigenfunction of the symmetric prob­
lem. For small G (i.e., G/e<<Cl), we get by first-order 
perturbation theory for the average number of pairs 
(iNu) excited to the upper level, 

lim ( | ^ w )«25G 2 / ( 2e -8G) 2 (23) 

where eu— ei= e, the subscripts /, and u denoting lower 
and upper levels, respectively. The ratio of amplitudes 
Ci/Co (where the subscript denotes the number of 
pairs excited) behaves like 5G/2(e—4G) for low G 
values. 

In the strong-pairing-force limit ( G / e » l ) 

lim (iNu) = iQ. (24) 

As we shall see later, this high-G limit coincides with 
the BCS method. 

•A. de-Shalit and I. 1?almi, Nwlear Shell Theory <Academic 
Press Inc., New York, 1963). 

B. The BCS Solutions 

In the case where tii—£lu=£l and the number of 
particles makes the system half-filled, the chemical 
potential X lies exactly half-way between upper and 
lower levels. If we measure the single-particle energy 
from X=0, obviously — ei— eu—Je. Therefore, the solu­
tions of the set of BCS equations are readily obtained. 
Dropping the last term in Eq. (2), we have 

Uf—Vu
z=UiV .-(i--V: 

«.*=tf=«.»i=(l+— ) A , (25) 

A 2 =(GO) 2 - i e 2 . 

From Eq. (25), we see that in order for A to be real, 
the condition should hold 

G>e/2f i . (26) 

Thus, the BCS solution breaks down for pairing force 
smaller than e/212. I t is instructive to notice that the 
"critical" pairing-force strength given by Gc~e/2Q is 
proportional to e/fi; thus, the requirement that e/Q 
should be small for the validity of BCS solutions is in 
fact related to the size of Gc. 
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Using Eq. (25), we obtain 

<*#„>=Ot^=jO[l-- (€/2G0)]. (27) 

Thus the behavior of the BCS solution at small pairing-
force strength is drastically different from the exact 
solution. One can see that the BCS value of (^Nu) falls 
much faster than the exact value for small G. 

As was mentioned before, as G becomes large, {\NU) 
approaches §£2, and the BCS and exact solutions 
approach each other at large force strength G. 

For the purpose of comparing the amplitudes, a 
slightly different representation of the BCS wave func­
tion is needed. The BCS wave function, ^0 , has to be 
rewritten in the quasispin operators introduced in Eq. 
(10), since the exact wave function is expanded in the 
basis vectors of the type 

k2p>sIJO«,-l$2«+*> 
= [>!Q0(Q0-1). • • (Va-p+l)l-w(S+(a)y\Oa), (28) 

where 
|0 a>=|i0o , - J O . ) 

denotes an empty a orbital, and p denotes the number 
of pairs in the a shell. A rather straightforward manipu­
lation of M>o easily gives 

*o= n 
K—a, b,' 

E - ( - ) < s + 0 O ) W . (29) 

In the representation of Eq. (28), 

K=a,b,-~ L X=l \uj \ X / J 

where we have used the usual binomial-coefficient nota-

tion \m) , -. Now we designate the ampli-
(n—mjlml 

tude of the lowest zero-order configuration by Co, the 
next by Ci, and so on. In the absence of interaction, 
the lowest configuration with p pairs is then | apb°c°- • •), 
where a is the lowest j shell, the next | a^Pc0 • • •) a 
state with a pair excited from a to b. 

From Eq. (30), we have (for the case of P=fia) 

Co=va*« I I ««0', 
K—b,C" (31) 

Ci^Q,c&bU(?
a~lVaUbVbQb~l XI ««°S etc. 

K~C,d,'" 

If we specialize with the symmetric two-level case, the 
result becomes simple. Letting fta=0&=0, and Pa+Pb 
= 0 (Pa+Pb is the total number of pairs). 

C0=C[a2 Q ]=M6 )° , 

C 2 - C [ a 2 Q - 4 & 4 ] = J C ( 0 - l)ua*va*-*Ub*-*Vb* , (32) 

C„-C[a2Q~2^2 

- > - ( ! > • 

pVa
a-pUb®-l>Vb

p , 

FIG. 5. Average .£ 
number of pairs in °-
the upper level © 
(J^«>, where ./«, iz | 
- 9 / 2 , # = 1 0 , €=1 | 
MeV. 

0.03 0.1 1.0 10 
Pairing-force matrix element G (MeV) 

where p is number of pairs promoted from a to b. The 
ratio of a higher order amplitude to the lowest order 
one is then given by 

p /&\/Ua 

0 \p/\Va't 

tt\/UaVb\
V 

p/\vaUb/ 
(33) 

„ /Q\/2GQ-ey 

3 \J\2GQ+J 
(34) 

Substituting Eqs. (25) into Eq. (33), we finally have 

Cv /Q\/2GQ-

C0 \p/\2GQ+€ 

Thus, for very large pairing-force strength, the ratio 

approaches just ( J , the number of ways of distribut­

ing p pairs in 0 places. 

C. Numerical Solutions 

Here we make a detailed comparison of the BCS 
and exact solutions for the symmetric (and the un-
symmetric) example, computed over a range of pairing-
force strength. The separation between the a and b 
levels is taken to be 1 MeV. In Figs. 5 and 6 are given 
the (iNu) values versus G for the symmetric and un-
symmetric cases, respectively. Notice that both cases 

1 

-1 
10 

-2 
10 

-1 

, 

B C S v ^ ^ — — ' 

/ / 
if 

/A-Exoct 
if 
If '/ '/ 

If 

1 

' ' i " - L _ _ 

. .,.,..! 

•] 

- J 

0.1 1.0 10 tOO 

Pairing-force matrix element 6 (MeV) 

FIG. 6. Average number of pairs in the upper level (|iV„), 
where ju=f, ji = f, iV=8, € = 1 MeV. 
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» o.i h 

FIG. 7. The ratio 
of amplitudes CI/CQ 
in the symmetric 
case with Qw —0^ = 5, 
JV=10, e = l M e V . 

ength, G {MeV) 

One other point to be noted is the existence of in­
flection points in the ratios of amplitudes in the exact 
solution. In the absence of an analytical solution for 
the exact case the precise force strength G where the 
inflection point occurs is not sharply determined; how­
ever, it appears to occur very close to Gc, that is, just 
where the configuration mixing ceases to be present in 
the BCS method. The configuration mixing in the 
exact solution drops rapidly at Gc; however, whereas 
the BCS solution goes down all the way to zero, there 
always remains configuration mixing of the pair-
promotion type in the more correct solution. Thus, the 
breakdown of the BCS method at Gc is probably an 
exaggerated manifestation of such a change of con­
figuration mixing. The sharp transition between super-
fluid and normal states of nuclear matter is clearly 
an artificial feature of the BCS approximation, for the 
size of our system is comparable to those in real nuclei. 

exhibit a similar appearance. We shall now look more 
closely at the symmetric case. In this case, the critical 
pairing-force strength Gc=0.1 MeV. The average 
number of pairs in the upper level (%NU) coincides for 
BCS and exact solution at a force just above critical, 
and thereafter the BCS solution remains above the 
exact solution. At larger G the two methods approach 
asymptotically. The exact wave function here has six 
components and we now wish to compare BCS and 
exact solutions with respect to all components. In Figs. 
7 through 9, are plotted the ratios of amplitudes for 
the symmetric, degenerate case analogous to Figs. 1 
through 3. It is to be noted that there always occurs 
a crossover of the two ratios, and also that the largest 
error is made in the amplitude for promotion of a 
single pair, the error being smaller in the higher order 
components. The crossover points do not all occur at 
exactly the same force strength, but there is actually a 
region of maximum accuracy of the projected BCS 
wave function just above threshold. 

FIG. 8. The ratio 
of amplitude C2/Co 
in the symmetric 
case with ttu — $li = 5, 
tf=10, e = l MeV. 

FIG. 9. The ratio 
of amplitude C3/C0 
in the symmetric 
case with Qu = Qi = 5, 
N = 10, €=1 MeV. 

Pair ing- force strength, G (MeV) 

Pair ing-force s t rength , G (MeV) 

It is important to keep in mind two distinct types 
of error associated with BCS solutions. The first arises 
from the presence of wave function components with 
spurious numbers of particles, and projecting out the 
spurious components from a BCS solution, we see, 
results in a considerable decrease in error above critical 
force strength. The remaining error is associated with 
the spurious phenomenon of the sharp superfluid-
normal phase transition. The projected BCS solution 
simply has fewer variational parameters than the 
degrees of freedom in the system. Further marked 
improvements without an increase in the number of 
variational parameters have been achieved by Dietrich, 
Mang, and Pradal3 through performing the variation 
with the fixed-particle Hamiltonian expression, rather 
than first solving the BCS equations. Also Mikhailov10 

has achieved improved solutions by inserting renormal-
1 0 1 . N. Mikhailov, Zh. Eksperim. i Teor. Fiz. 45, 1102 (1963) 

[English transl.: Soviet Phys.—JETP 18, 761 (1964)]. J. Bang 
and I. N. Mikhailov, P-1573, Joint Institute for Nuclear Re­
search, Dubna, 1964 (to be published). 
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ized Geff and ea values into the BCS equations. Both 
these methods give nontrivial solutions, no matter how 
weak the pairing-force strength. Such new methods 
appear to be of great importance in pairing-force calcu­
lations where small or no configuration mixing would 
appear in the ordinary BCS solutions. 

TH E investigation of In124 has been a continuation 
of recent work on indium isomers of mass 

numbers 118, 120, and 122, in connection with the 
systematic study of energy levels in the even tin 
isotopes.1 The indium isomers were produced in (n,p) 
reactions in various samples of enriched tin isotopes, 
by irradiating them with 14-15-MeV neutrons from 
the neutron generator at the University of Arkansas. 
The same procedure was apparently favorable in the 
case of In124, too. Because the activation cross section 
of the (n,p) reaction in Sn124 turned out to be several 
times smaller than that of the reaction Sn122 (w,^)In122, 
a sample containing 300 mg of 96% enriched metallic 
Sn124 was needed (supplied by Stable Isotopes Division, 
Oak Ridge National Laboratory, Oak Ridge, Tennessee). 
In order to obtain satisfactory statistics, the pulse-
height spectra had to be accumulated from several 
hundred short runs. Typically, some 1000 counts were 
collected to the gamma-ray peaks of the new activity 
in the spectra, the background not being higher than 
that within the peak. The stability of the electronics 
was carefully checked and the shift in calibration 
amounted to less than 1% during every experiment. 

The detectors used in the investigation were two 
3X3-in. Nal(Tl) crystals and one l | - in. diameter, 1-in. 
deep plastic beta detector. A fast pneumatic transport 
system was available to bring samples to the detection 
room. For details of irradiation and detection tech­
niques used, see Ref. 2. 
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None of the radiations from other indium isomers 
previously detected after short irradiations of enriched 
samples of Sn118, Sn120, and Sn122 were observed from the 
fast transport Sn124 capsule, chemically identical and 
bombarded under the same conditions. This supports 
the fact that the 3.6-sec activity is a neutron-induced 
reaction product of Sn124. The dominating activities in 
the Sn124 sample were N16 from contaminating oxygen 
and a 40-min Sn123 as a (n,2n) product of Sn124. 

In the decay of In124, as in the decay of every indium 
isomer studied earlier, the first excited 2+ state of the 
product nucleus could be expected to be populated at 
least in part of the disintegrations. The first excited 
state of Sn124 is well known to lie at 1.13 MeV,3 and as 
anticipated a gamma ray of energy 1.13±0.01 MeV 
was observed in the singles gamma spectrum of the 
irradiated Sn124 sample, exhibiting a much more rapid 
decay than N16. Two other gamma rays of energies 
0.99±0.02 MeV and 3.21±0.03 MeV were found to 
follow the same decay rate as the 1.13-MeV gamma. 
The relative intensities of the 0.99 and 3.21-MeV 
gammas were measured to be 33db7% of the intensity 
of the 1.13-MeV gamma. The result, 3.6±1.0 sec, for 
the half-life was obtained by following the decay of the 
photopeaks of the three gammas in many consecutive 
spectra. 

The beta spectrum was badly masked by the strong 
betas from N16, but by comparing the spectrum of the 
Sn124 sample with the pure N16 spectrum, a short-lived 
excess of about 10% was found in the former. The half-
life of the fast decaying part of the spectrum was found 
to agree within the limits of error with the gamma half-
life. The beta spectrum had the main component with 

3 B . L. Cohen and R. E. Price, Phys. Rev. 123, 283 (1961). 
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Irradiation of Sn124 samples with 14-15-MeV neutrons was found to produce a new radioactive nuclide 
which was assigned to In124. The following radiation characteristics have been observed to belong to the 
decay of In124: half-life, 3.6±1.0 sec; beta end-point energy, 5.3±0.8 MeV; gamma rays having energies 
1.13±0.01 MeV, 0.99±0.02 MeV, and 3.21db0.03 MeV, and relative intensities 100, 33±7, and 33±7, 
respectively. 


